
Social Crowds Using Transactional Analysis

Brian C. Ricks and Parris K. Egbert

Abstract More and more applications are relying on simulated crowds to populate
films, games, and architecture. Decades of work in this area has produced agents
that deftly avoid collisions, but the crowds still look stiff and false because agents
do not socialize naturally with each other. On the other hand, ours is a new, expres-
sive algorithm for adding social dynamics to crowds that breathes a new dimension
of realism into simulations. Unlike previous approaches, our work allows agents to
have multiple social encounters with other agents. We correctly allow interactions
to evolve as time passes using the psychological area of transactional analysis. Ad-
ditionally, we break from previous paradigms since we do not tie our approach to a
specific obstacle avoidance algorithm. Instead our algorithm has a flexible architec-
ture that will run with almost any obstacle avoidance algorithm. Finally, we allow
for artist direction in our simulations, including bi-modal crowds and social envi-
ronments that can be changed in real-time. Our results show that our social crowd
algorithm runs in real-time with up to 4,000 agents with far more realistic behaviors
than previously simulated.

1 Introduction

Crowd simulation plays a key role in the production of film and games. In the film
industry, simulated crowds populate worlds where real crowds would be impossible
to create, would be too expensive to be practical, or would not allow for full artist
direction. In the game industry, all interactive crowds have to be simulated and more
and more games rely on large crowds as part of the plot and gaming experience
(see [11]). Even architecture and emergency planning benefit from realistic crowd

Brian C. Ricks
Brigham Young University, Provo, UT 84602 USA, e-mail: bricks@byu.edu

Parris K. Egbert
Brigham Young University, Provo, UT 84602 USA e-mail: egbert@cs.byu.edu

1

2 Brian C. Ricks and Parris K. Egbert

simulation since it allows engineers to anticipate the movement and behavior of
people as a building is being designed.

As a result of this real need in industry, the last two decades has seen a strong
research interest in crowd simulation algorithms. Unfortunately, most of these al-
gorithms have treated agents more like particles than people since agents usually
see other agents only as moving obstacles. This trend runs contrary to psychology
research that has shown that up to 70% of pedestrians show social interactions as
they walk [7, 15, 19].

Some recent research has recognized the need for social interactions within
crowd simulations, but most approaches prove to be insufficient: they do not al-
low agents to have repeated interactions with different agents, they are built on top
of a specific obstacle avoidance algorithm, they are designed only for a very spe-
cific social setting, or they do not allow for artist direction. We believe that the
power of crowds in film, games, architecture, and emergency planning would all
be greatly enhanced with a social crowd algorithm with all of these capacities. Ex-
panding on [30], our algorithm is different from previous work for three specific
reasons:

1. Our social crowd algorithm allows social interactions to evolve over time and for
agents to have repeated interactions with different agents. In order to achieve this
we draw on the area of psychology called transactional analysis that studies such
repeated interactions.

2. Our algorithm uses a unique framework for stopping to talk and pair walking
behaviors. This framework means our approach is not dependent on a specific
obstacle avoidance algorithm.

3. Our algorithm is specifically designed for artist direction. Our results can be
easily directed to reflect the different feel of a work place, a public park, a school
campus, or a shopping center. Additionally, the feel can be changed in real-time
to reflect changes in the environment (such as a when a fire alarm goes off).

In order to validate our algorithm, we demonstrate the existence of all of these
features in our results section, Section 7. Our approach runs in real-time with up to
4,000 agents and produces believable crowds, such as those shown in Figure 1.

2 Previous Work

We join previous work in turning to psychology and sociology research to gain in-
sights into improved crowd simulation. Durupinar et al. [8, 9] used the OCEAN
personality method [10] to give agents different personality traits. These variations
include the speed at which agents move and their response to obstacles (like a pref-
erence to move to the right). Pelechano et al. [26] used a presence measure to judge
the realism of their crowds. Unlike previous work, we draw on the psychological
field of transactional analysis (see Section 3.1).

Social Crowds Using Transactional Analysis 3

Fig. 1 Example of a large social crowd on a path at night. Our algorithm uses the area of transac-
tional analysis to create crowds where people move in and out of evolving conversations, stop to
talk, and pair walk as shown here.

There have also been many approaches to building social crowds. Musse and
Thalmann [20] presented a sociological algorithm that allowed agents to change
groups when moving between fixed goals. Their results focused on a museum sce-
nario where such fixed goals would not be unusual. Yeh et al. [33] used proxy agents
to model the influence of protection and authority. This was achieved by the creation
of spaces that were considered occupied by the crowd simulation engine but which
were not rendered as occupied on the screen. Pedica et al. [24, 25] proposed an al-
gorithm for agents talking in groups based on human territory theory. Carstendottir
et al. [6] focused on where agents choose to sit in places like a cafe or restaurant.

Traum et al. have done extensive work on dialog for immobile agents. Early re-
search [22, 23] forced agents to be in a constant shared conversation. Later work
allowed people to join and leave conversations at will [16] followed by an approach
that allowed agents to move to engage different people [17]. This work created be-
lievable dialogs but did not deal with large crowds with agents that may move large
distances.

Popelová et al. [27] presented research focused purely on two people meeting and
then walking together to a destination. Agents wait for each other when needed and
walk next to each other using an adapted social forces obstacle avoidance algorithm.
They showed that this type of grouping is more believable than the simple leader-
follower social setup proposed by Reynolds [28]. Karamouzas and Overmars [18]
looked at how small groups of two or three change their formation as they dodge
obstacles and other people. Their approach was based on the work of Moussaı̈d et

4 Brian C. Ricks and Parris K. Egbert

al. [19] who did an empirical study of crowds in public places. Moussaı̈d et al.’s
work verified the prevalence of social interaction within crowds.

Such work in social crowds is successful and diverse; however, there are sev-
eral key dynamics that we feel would make social crowds more believable. First, at
work, school, or a public park, people move in and out of different social encounters.
Many recent approaches designed for large crowds are not flexible enough to handle
both large crowds and the natural evolution of social interactions. Second, most ap-
proaches work by manually changing a specific obstacle avoidance algorithm, thus
forcing users to the specific advantages and disadvantages of their choice. Third,
approaches have focused on a specific social environment (for example people in a
museum [20] or people on dates [27]) instead of being designed for artist direction
to allow the end user to choose the specific feel of the simulation.

Our social crowd algorithm addresses each of these issues. Unlike previous work,
our algorithm allows agents to move in and out of different groups naturally by us-
ing transactional analysis. Also, our algorithm has a unique architecture that allows
it to run independent of the underlying obstacle avoidance algorithm. Finally, our
approach is designed to be artist directed and allows the user to easily change the
social environment being simulated.

3 Improving Social Crowds

Fundamentally, crowd simulation algorithms are seeking to optimize a reward func-
tion for a group of agents. Traditional crowd simulation algorithms usually try to
optimize a function that gives a reward for the speed at which agents reach their
destinations while avoiding a large collision penalty. Other variations on this theme
include optimizing over agent effort or acceleration (consider [12] and [32]). Al-
though such a speed/collision reward function is simple and crowds designed to
optimize such a reward function have some realistic characteristics, this simple ap-
proach fails to capture many of the important details of a real crowd.

Observing a real crowd of people shows several dynamics that cannot be ex-
plained by a simple speed/collision reward function. For example, when two ac-
quaintances pass they usually stop momentarily to greet and chat. Better friends may
spend a significant amount of time talking together without moving towards their
destination. Simulating such a commonplace event is impossible with a speed/collision
reward function. Similarly, when two friends are walking in the same direction, they
often walk right next to each other so they can talk. Again, observation shows that
often these “pair walkers” do not follow the shortest path possible to their destina-
tion.

More accurate crowd simulations will come with the advent of more expressive
reward functions for agents. Instead of balancing only speed to destination and col-
lision avoidance, we believe more accurate crowds will come with an algorithm that
balances speed, collisions, and social reward. Looking at to the two previous exam-
ples when people deviated from shortest paths in order to stop to talk or pair walk,

Social Crowds Using Transactional Analysis 5

these behaviors can be explained by adding a social reward into the overall reward
function. For example, people who stop to talk find a greater reward from socializ-
ing with each other than they do from continuing on their journey. Similarly, agents
who pair walk and thus deviate from their shortest path find a greater reward from
talking than from speed alone.

However, not every person stops with every other person in a real crowd. As
noted in our introduction, sociological research has shown that up to 70% of agents
show socializing behavior in real crowds at some point, but not everyone is social-
izing at every moment in a crowd. Again, this can be explained using our proposed
reward function. In cases when people do not stop to talk or pair walk, their reward
from socializing is less than the reward of reaching their destinations quickly.

It follows that a crowd simulation algorithm that allows for socializing needs
some method of determining whether a given agent will find more reward from
socializing or from hurrying directly towards its destination. We can do this using a
function with with the following signature:

SocialReward : a,b→ reward (1)

where a as the agent in question, b is a nearby agent with whom a could socialize,
and reward is a scalar that indicates the reward for a and b when they socialize. If
reward is greater than the reward from reaching the current destination as fast as
possible, then we would expect a to socialize with b.

One common approach to calculating SocialReward is to return one of two val-
ues: a high value if a and b are friends and 0 if they are not. Both Popelovà et al.’s
work [27] and Karamouzas and Overmar’s work [18] can be thought of as taking
this approach. Unfortunately, this all or nothing method fails to create the realistic
social dynamics seen in real crowds, as discussed previously. For example, if we
use this method and agents a and b approach each other in opposite directions, they
would stop and talk but to never stop talking. If the SocialReward function always
returns a high value, the agents would never find it more rewarding to move on than
to continue talking, and the crowd would quickly degenerate into pairs of friends
talking indefinitely. Similarly, if a and b were heading in the same direction, they
would pair walk but never break away from each other to reach their respective
destinations.

As noted by James and Coleman [7, 15] in studies on real crowds of people, each
person usually moves in and out of different conversations with different people as
they move to their destination. We follow this line of reasoning and propose that the
most realistic social crowds will come when SocialReward returns more than one of
two values and instead accounts for changes in social interest based on the passing
of time and past history.

6 Brian C. Ricks and Parris K. Egbert

Fig. 2 Graph showing how friendship and interest change the type of conversations each agent
has. If the friendship is higher, the conversations will be longer than if the friendship is weaker.
Similarly, if the agents’ interest is higher because they have not talked recently the conversation
will be longer than if the interest is low because they recently saw each other.

3.1 Transactional Analysis

We are aided by the fact that for decades sociologists and psychologists have studied
how interest in conversation evolves over time. In order to create a more realistic
SocialReward function, we turn to this research, specifically the area of transac-
tional analysis.

Introduced by Eric Berne in the 1950s [2], transactional analysis has studied the
how and why of conversation in a rigorous way. By now research in transactional
analysis has grown to include its own scholarly journal and professional association.
The research has produced countless scholarly articles and a myriad of popular psy-
chology books including [3, 4, 5, 13]. Most relevant to our research is transactional
analysis’ look at the expected length of a spontaneous social interaction or “rituals.”
The length of the conversation is often measured in terms of social “strokes,” or
moments when each person gives the other person attention.

Transaction analysis asserts that the length of a ritual, or the amount of expected
strokes in an interaction, is dependent on two main variables: the relationship be-
tween the agents involved and the history of their recent social interactions [4].
Again, looking at real people in real crowds, one would expect good friends to stop
and talk for a long time while such a lengthy engagement would seem awkward
or culturally unexpected between strangers. Similarly, one would not expect two
people to have a lengthy conversation if they have recently had another lengthy con-
versation. This can frequently be observed in an office environment. The first time
an office worker passes a secretary it would not be unusual for that person to stop
and talk for a while. If that same office worker walked back past the secretary a few
moments later, we would not expect more than a short greeting. If however, that
person did not come by for a long time or until the next day, we would expect to
see a return to a more protracted conversation. These dynamics are shown in Fig-
ure 2, which shows the expected conversation length based on friendship and recent
history.

Social Crowds Using Transactional Analysis 7

Fig. 3 Examples of traditional social crowds architecture on the left and our flexible architecture
on the right. Notice that our approach does not rely on a specific obstacle avoidance algorithm but
instead creates temporary social waypoints for each agent.

In order to capture these dynamics as outlined by the transactional analysis lit-
erature, our work implements SocialReward differently than previous work. Denot-
ing our function SocialRewardta to indicate that we are using transactional analysis
principles, our approach can be formalized as follows:

SocialRewardta : a,b,History(a,b)→ reward (2)

The difference between SocialReward and SocialRewardta is the introduction
of a new argument, History(a,b) which represents the past history of a and b’s
interactions. Using SocialRewardta we can create agents that stop to talk and pair
walk based not only on the strength of their relationship but also on their recent
interactions. We detail our implementation of SocialRewardta in Section 4.

3.2 New Architecture

Before we detail our implementation of SocialRewardta, we address another sig-
nificant difference between our work and previous approaches. In addition to de-
termining which interactions are rewarding, a social crowd algorithm needs to ma-
neuver agents in and out of rewarding conversations. Turning again to sociology
and psychology, with every conversation there is a mutually understood center
called the formation nucleus (consider Scheflen and Ashcraft [31] or Pedica and
Vilhjàlmsson [25]). A social crowd simulation algorithm needs to move agents to-
wards their nucleus until they are close enough to engage in conversation. If the
agents are pair walking this is even more complicated since the formation nucleus
will move as the agents move.

In order to move agents in and out of range of a formation nucleus, almost all
previous work has taken the approach of manually altering a specific underlying
obstacle avoidance algorithm. For example, if an algorithm is using social forces
like [27], the social algorithm would alter the implementation of social forces to
allow agents to move toward a given formation nucleus. The same could be said for

8 Brian C. Ricks and Parris K. Egbert

other popular algorithms like velocity-based approaches (as seen in [18]). However,
this implementation choice means that each social crowd algorithm is permanently
tied to a specific obstacle avoidance algorithm (consider Figure 3).

We believe that a far more useful architecture will decouple the choice of obsta-
cle avoidance algorithm and the social engine, as shown in Figure 3. To do this, we
allow our social engine to temporarily alter each agent’s destination based on so-
cial factors, but not to make any changes to the obstacle avoidance algorithm. This
approach, which we detail further in Section 5, means that individual users of our
social crowd algorithm are not tied to a specific obstacle avoidance algorithm.

4 Implementing Transactional Analysis

In the previous section we discussed the theory of social crowd simulation. In this
and the following two sections we give the details of our implementation starting
with transactional analysis.

As discussed in Section 3.1, transactional analysis presents a scientific way of
predicting the amount of time that a conversation will be rewarding to participants.
This length is calculated using two variables: the relationship of the agents and
their recent history of conversation. In order to add this to our social algorithm, we
quickly need to figure out the relationship between two agents and a simple way to
store the relevant information of their past interactions.

4.1 Determining Relationships

Returning again to real life relationships, we note that most relationships are reflex-
ive but not necessarily transitive. Relationships are generally reflexive since they are
built through mutual interaction. Formally, if A is the set of all agents in our simu-
lation, then we want a relationship model where ∀a,b ∈ A : SocialReward(a,b) =
SocialReward(b,a). However, even if relationships are reflexive, we do not neces-
sarily assume that they are transitive. Specifically, if ∀a,b,c∈A : SocialReward(a,b)=
SocialReward(b,c) 6⇒ SocialReward(a,b) = SocialReward(a,c). All the same, we
would expect the probability of SocialReward(a,c) being related to the values of
SocialReward(a,b) and SocialReward(b,c) since friends of friends are more likely
to be friends.

We have found that a simple way to create a set of agents with these properties
of reflexivity and intransitivity is to give each agent a friendship base score between
0 and 2π . The strength of the relationship between any two agents a and b can be
found by taking the angle difference between the friendship base score of a and b.
If the angle difference is low, the relationship between them is strong and they will
be highly rewarded by talking. If the distance is high, they do not have a strong
relationship and will not find a lengthy conversation rewarding.

Social Crowds Using Transactional Analysis 9

There are a variety of ways to calculate angle difference. For our work the fol-
lowing formula worked successfully:

AngleDi f f erence(a,b) =

a−b i f (−π < a−b < π)
a−b+2π i f a−b≤−π

a−b−2π i f π ≤ a−b
(3)

Another way of thinking about this is that a and b are located on a unit circle at
the angle corresponding to their friendship base score. If the distance between them
on the outside of the circle is short, they are good friends. If the distance is long, they
are not good friends. It follows that using this method creates relationships that are
reflexive since the distance between two angles is reflexive. It also follows that the
relationships are not necessarily transitive since angle differences are not transitive.
Notice also that if a and b have a low angle difference and b and c have a low angle
difference, then a and c are likely to have a low angle difference. Thus, this simple
approach gives us all the desired friendship properties.

In Section 6 we discuss how we distribute the friendship base scores of our agents
to allow for artist direction in the creation of a scene.

4.2 Storing Past History

The transaction analysis literature suggests that people find a diminishing reward
from socializing when they have socialized recently. Formally, we call this the in-
terest of two agents interacting Iab if a and b are the agents in question. Since agents
have different interest levels for each other agent, agents store an array of scalars
that indicate their interest level relative to each other agent. We discuss optimization
to this approach later.

In our section on artist direction, Section 6, we discuss how global variables
can change this interest level, but for now we assume these global values are set to
identity. At the beginning of the simulation we initialize all interest levels to 1, i.e.,
∀a,b ∈ A,a 6= b, Iab = 1. The question therefore becomes how to evolve the interest
between agents to reflect social interaction, or lack thereof, as the simulation moves
from the current timestep t to the next timestep t +1.

In order to calculate changes in interest we introduce two simple functions: a
Near function and a Socializing function. Near(a,b, t) is true iff a and b are close
enough to be socializing at timestep t, and Socializing(a,b, t) is true iff a and b are
actually socializing at timestep t. It follows that Socializing(a,b, t)⇒ Near(a,b, t).
Note than Near(a,b, t) is easy to calculate since crowds simulations almost always
use a grid structure to speed up relevancy calculations (see [29] for further discus-
sion). Socializing(a,b, t) involves a simple lookup and is likewise computationally
inexpensive.

The first step in evolving interest levels between agents is to increase their interest
if they are not socializing. Since ¬Near(a,b, t)⇒ ¬Socializing(a,b, t), if a and b
are not near each other at timestep t then we increase Iab at timestep t+1 as follows:

10 Brian C. Ricks and Parris K. Egbert

Iab,t+1 = Iab,t + .01 i f ¬Near(a,b, t) (4)

The second step involves decreasing interest if agents are socializing as follows:

Iab,t+1 = Iab,t − .03 i f Socializing(a,b, t) (5)

In both of these steps our choice of amount to increase and decrease interest
is arbitrary. However, we have found in practice that for realistic results interest
should increase slower than it decreases when agents are socializing. Further, we
have found that two unnatural results can occur if additional steps are not added
to our calculations. First, agents can be near each other but not socializing. For
example, agent a and b may be socializing and c and d may be socializing with both
of these groups being very near each other. If a,b,c, and d are all near each other, an
unnatural conversation oscillation can occur. If a and b end their conversation about
the same time that c and d end their conversation, then a and c and b and d might
immediately begin socializing. When their conversations end, a and b might return
to talking and c and d might return to talking. This can go on forever and does not
create believable results. We therefore add the following calculation:

Iab,t+1 = Iab,t − .01 i f Near(a,b, t)∧¬Socializing(a,b, t) (6)

This calculation implies that agents that are near each other but not socializing
exchange some non-verbal communication (or a simple hello) that results in a slight
decline in interest.

We also enforce a dramatic decrease in interest when a conversation ends to
prevent other conversation oscillations as follows:

Iab,t+1 = Iab,t − .5 i f Socializing(a,b, t−1)∧¬Socializing(a,b, t) (7)

Combined these four calculations can be written as:

Iab,t+1 =

Iab,t + .01 i f ¬Near(a,b, t)
Iab,t − .01 i f Near(a,b, t)∧¬S(a,b, t)
Iab,t − .03 i f S(a,b, t)
Iab,t − .5 i f S(a,b, t−1)∧¬S(a,b, t)

(8)

We also prevent interest levels from growing above 1 since there is a maximum
interest that two parties will have. With this cap, we can store interest levels sparsely
for each agent. Agent a will only store interest values for another agent b ∈ A if
Iab,t < 1. In large simulations (like ours with 4,000 or more agents) the majority of
interest levels will be at 1. This means our optimization provides a space and time
savings.

As we discuss in our results section, implementing transactional analysis in this
way results in agents who have multiple realistic conversations with different agents
over time that match what we see in real life.

Social Crowds Using Transactional Analysis 11

Fig. 4 Graph showing how an agent’s interest in talking with another agent evolves over time in a
scenario like that shown in Figure 8. The vertical axis shows interest. Interest levels high enough
to produce conversation are highlighted white and interest levels too low to produce conversation
are shaded in gray. The horizontal axis shows time. Areas shaded blue are times when the agents
are close enough to socialize and areas shaded green are times when the agents actually engage
in conversation. Notice that in the first encounter the agents socialize for a long time until their
interest drops below the threshold, at which point it drops dramatically (see Equation 8). Upon
meeting again, the agents have a short conversation and later they don’t have any conversation
since their interest is too low. When they meet again much later, the interest has risen and they
again have a long conversation.

4.3 Individual Mood

In addition to giving each agent a friendship base score and interest values, we give
each agent a mood. The mood for each agent a, Ma, is a single scalar that reflects
agent a’s interest in socializing. A mood of 1 indicates a high interest in socializing
and a mood of 0 indicates no interest in socializing. The difference between agents
with high and low mood values are easily seen in our simulation: Agents with higher
values stop to talk with more people and their conversations are longer, while agents
with lower values talk with fewer people and for less time. Use of a mood value
again gives us further artist direction capacities in designing a social environment.

4.4 Social Reward

Using our friendship base angle, interest levels, and agent mood as just described,
we can now give our implementation of SocialRewardta as originally discussed in
Section 3.1.

SocialRewardta =
AngleDi f f erence(a,b) ·min(Iab,t , Iba,t) ·min(Ma,Mb) ·GlobalInterest (9)

12 Brian C. Ricks and Parris K. Egbert

We use a min calculation in the event that Iab,t 6= Iba,t . This should not happen
in our current simulation, but we are looking at future work where different types
of agents may have different personalities and as a result different rates of change
in their interest. For our implementation, an agent will socialize if SocialReward
is greater than .5. If not, the agents will head toward their respective destinations.
We discuss GlobalInterest further in Section 6 since it is part of our artist directed
capabilities.

5 Implementing Flexible Architecture

As noted in our theory section, Section 3.2, the second main contribution of our
social crowd algorithm is a flexible architecture for moving agents in and out of a
formation nucleus when socializing. Specifically, we do not tie our implementation
to a specific obstacle avoidance algorithm. Instead, we temporarily alter each agent’s
waypoint to reflect the current social situation.

We allow for two main types of agent interaction. First, we allow agents to stop
and talk when they are heading in opposite directions. Second, we allow agents
to pair walk, or walk in tandem, as they head toward their destinations. Previous
work generally focuses on one or the other of these phenomenon, but we provide an
implementation that allows for either of these two interactions based on the social
circumstance.

5.1 Stopping and Talking

Stopping to talk happens when two agents recognize that they will have a rewarding
conversation and also recognize that their destinations are in different directions.
In our implementation, agents will want to stop to talk as opposed to pair walking
when the cosine of the their destination angle difference is less than 0.

Stopping to talk has two distinct phases. In the first, agents walk towards each
other until they are within their formation nucleus. In the second phase the agents
stop moving and talk until the conversation ceases to be rewarding. In assigning
temporary social waypoints to agents who are stopping to talk, we account for both
of these phases. If agents are not within their formation nucleus, then their tempo-
rary social waypoint will be in the direction of the other agent. If the agents are
within the formation nucleus, the temporary social waypoint is simply their current
location.

Formally, the temporary social waypoint for a when stopping to talk to b is as
follows:

StoppedWaypoint(a,b) =
{

a+ ||b−a|| i f |a−b|> 1.5m
a otherwise (10)

Social Crowds Using Transactional Analysis 13

Fig. 5 Simply using the average of pair walking destinations can lead agents into local minima,
as shown here. The blue (darker) agent’s destination is denoted by the blue X, the green (lighter)
agent’s destination is denoted by the green X, and the average is denoted by the red X in the
middle. If our algorithm assigns a temporary waypoint at the average of the blue and green agents’
destinations then they will get stuck in the concave wall. Instead we use a dominant agent strategy
to remove the agents stalling as they pair walk.

5.2 Pair Walking

Pair walking occurs when two agents walk together because their destinations are
in roughly the same direction. Since this means that the formation nucleus of the
conversation is moving, this can prove to be a significantly more challenging prob-
lem. However, we have a straightforward and efficient method for reproducing this
behavior in a crowd.

Agents start pair walking if the cosine of their angle difference is greater than 0.
Notice that this does not imply that the destinations are in the exact same location,
which we take into account later. Once agents begin pair walking, we need to figure
out how the formation nucleus will move as the agents move. One failed approach is
to take the average of the agents destinations and move the formation nucleus in that
direction. This seems like a plausible approach since it does not sacrifice the speed
reward of one agent in favor of the other. However, in practice, moving agents in the
average direction of their destinations can lead them into obstacles. If an obstacle
is concave, the agents can end up in a local minimum where they cannot escape
without replanning their paths (consider Figure 5).

To remove this unrealistic behavior, we instead move the formation nucleus along
one of the two agents’ paths. To do this we choose a “dominant” agent by taking
the one with the lower internal ID number and the formation nucleus remains near
this dominant agent. In the future we are looking to more psychologically-based
approaches for choosing dominant agents.

In order to move the formation nucleus using only temporary social waypoints,
we again recognize two distinct cases: times when agents are within the formation
nucleus and times when some obstacle has split the agents and they are no longer
within the nucleus. In the case where the agents are within the formation nucleus, the
agents continue walking at a comfortable pace until their real destinations diverge.

14 Brian C. Ricks and Parris K. Egbert

Fig. 6 How a pair walking agent adjusts its speed based on the angle to the other agent. If the other
agent is in front of the agent in question (angles highlighted green), the agent in question moves
at full speed. If the other agent is more than a little behind (angles highlight orange) the agent in
question slows proportionally. If the other agent is almost directly behind the agent in question
(angles highlighted bright red) the agent in question approaches a full stop. Using this approach
agents are usually able to stay abreast and if they are separated they start and stop naturally.

In the case where the agents are not within the formation nucleus, we slow down the
agent who is in front until the other one catches up (see Figure 6).

We could have agents turn around to meet back up again, but as noted in Popelová
et al. [27], stopping to wait generally looks more believable. Additionally, we have
found that dramatic changes in speed, for example if the agent in front stops sud-
denly, look less natural than slowing down as agents slip out of the formation nu-
cleus. To simulate these natural changes in speed, we throttle the speed of the agent
in front based on the cosine of the angle to the front agent’s destination and the angle
to the lagging agent. If the cosine is greater than−.1 than the agents will walk at full
speed. Otherwise the agent in font will slow down proportional to the cosine. The
lower the cosine, the slower the agent in front will go. In practice we have found
that this creates very natural pair walking even in environments where there are lots
of obstacles and agents are frequently separated.

Centering the formation nucleus directly above the dominant agent can also cre-
ate small but regular oscillations in agent movement. This happens as the less dom-
inant agent is drawn toward the formation nucleus then repelled by the obstacle
avoidance algorithm to prevent a collision. As the less dominant agent angles away,
the obstacle avoidance algorithm may no longer recognize the impending collision
and the agent will turn back, and so forth, for the length of the journey. To prevent
these oscillations, we offset the formation nucleus from the dominant agent to the
left or right based on the location of the less dominant agent (see Figure 7).

To offset the formation nucleus (and the corresponding temporary social way-
point) our algorithm finds the line from the dominant agent to the dominant agent’s

Social Crowds Using Transactional Analysis 15

Fig. 7 Minor oscillations are visible when agents pair walk without separating their temporary
social waypoints. On the left two agents without this improvement head to the same point and
will begin oscillating as the obstacle avoidance algorithm tries to prevent a collision. On the right
our algorithm assigns a temporary social waypoint that is a shoulder’s width away from the blue
(darker) dominant agent for the less dominant green (lighter) agent.

waypoint. Then we use simple geometry to determine on which side of that line
the less dominant agent’s location falls. The less dominant agent’s temporary so-
cial waypoint is then offset in that direction by a shoulder’s width. This removes
oscillations and agents move naturally as a pair until their destinations diverge.

Calculating temporary social waypoints for stopping to talk and pair walking
produces very believable crowds without tying our implementation to a specific
obstacle avoidance algorithm. As discussed in our results section, Section 7, we used
three different obstacle avoidance algorithms in our implementation, each of which
produced realistic social crowds without manually altering the obstacle avoidance
algorithms.

6 Implementing Art Direction

Many of the papers noted in our previous work section, Section 2, proposed social
algorithms for specific social environments. For example, Musse and Thalmann [20]
focused on a museum environment, Popelová et al. [27] focused on people who are
permanently paired off, and Karamouzas and Overmars [18] looked only at small
groups like shoppers at a mall. These approaches are successful in reaching their
goals, but none of them are expressive enough to create a large range of social
environments nor are they flexible in letting the user easily choose the specific en-
vironment.

Our approach is unique when compared to previous work because our algorithm
is expressive in the types of social crowds it can simulate. Notice that in our sec-
tion about transactional analysis, Section 4, we gave two values to each agent that
determine its social behavior—a friendship base score and a mood. By altering the
distribution of these two values across all the agents in our simulation we can create
a huge range of social environments, including many of those proposed in previous
work in addition to new ones. Examples of these different environments and the
corresponding distribution of relationship values and mood values are shown in Ta-
ble 1. For example, we can create an office scenario where most people chat briefly

16 Brian C. Ricks and Parris K. Egbert

Table 1 Different social scenarios we can create using the artist directed nature of our scene.

as they pass or a school environment where people have proportionally less friends
but chat longer by simply altering these distributions.

The most interesting and unique environments are created when we allow for ei-
ther a bi-modal distribution or real-time changes in the distribution. Again, as shown
in Table 1, if we give half the agents one distribution and the other half another dis-
tribution, we can create convincing scenes sucha as people at a dinner party. If the
”party goer” agents are given higher mood values and have close friendship base
scores to each other, they will chat at length with most of the other party goers. By
giving the waiter agents lower mood values, they move about without stopping to
talk as they do their work.

Social Crowds Using Transactional Analysis 17

Similarly, changing the distribution over time can result in other striking simula-
tion results. For example, if we reduce the interest value of all agents simultaneously,
we can easily recreate a fire alarm scenario. Agents talk like normal until a button is
pushed that drops the interest level. The agents then move directly to their destina-
tions. Upon pushing the all clear button the user can bring the interest levels back up
and the agents resume socializing naturally. We give snapshots of such a scenario
in Figure 10. In order to facilitate global changes in interest, we found it easiest to
add a GlobalInterest value to our calculations, as shown in Equation 9. By attach-
ing the value of GlobalInterest to the state of the user-controlled fire alarm button,
we add real-time artist direction to our algorithm. Other time-dependent changes
include the natural change of mood throughout the day in a workplace or the change
in socializing at school before and after a bell rings.

Combined, the ability to alter the distribution of agent values and change the
global interest in real-time makes our approach a unique and powerful artist directed
social crowd simulation.

7 Results

Our algorithm is different than previous social crowd algorithms for three reasons:
our algorithm uses transactional analysis to move agents in and out of multiple inter-
actions, our algorithm is built using a flexible architecture, and our algorithm allows
for artist direction during the simulation. To validate these contributions, we ran our
algorithm using a variety of simulations (for example, see Figure 1 and Figures 8-
11) and looked for the presence of each of our contributions. We detail the results of
all three of these areas now, followed by a look at the performance of our algorithm.

7.1 Transactional Analysis Results

We verified our social crowd algorithm by looking for agents moving naturally in
and out of multiple conversations using the principles outlined in the transactional
analysis literature. In each of the simulations we ran, agents had multiple conver-
sations, the length of which evolved based on past interactions and reflected the
friendship base score and mood of each agent.

One example that verifies our implementation is shown in Figure 8. This figure
shows two agents who have four encounters over time. In the first encounter the
agents talk at length (noted by word bubbles above each agent). In the second en-
counter the agents still stop to talk but chat only briefly. In the third encounter the
agents do not talk since they have recently talked twice already. In the fourth en-
counter, which happens much later, their interest in talking has returned and they
again stop for a lengthy conversation. Notice that this encounter follows the pattern

18 Brian C. Ricks and Parris K. Egbert

Fig. 8 Results of our algorithm based on transactional analysis. As the same agents meet repeat-
edly, the conversation length, denoted by word bubbles, shortens until they do not stop to talk when
they meet (frame 3). After a long time passes (frame 4), the agents again engage in conversation.

established by transactional analysis for repeated social interaction (see Section 3.1
and Section 4). Figure 4 shows a graph of interest from a very similar scenario.

7.2 Flexible Implementation Results

Our second contribution centers around a flexible architecture that does not mod-
ify a specific obstacle avoidance algorithms. This contribution is straightforward
to demonstrate because we ran our algorithm using three very different underly-
ing obstacle avoidance algorithm. We implemented Helbing and Molnar’s social
forces [14], reciprocal velocity obstacles based on van den Berg et al. [1], and the
anticipation model proposed in Ondřej et al.’s work [21] and used each of these with
our social algorithm.

With every obstacle avoidance algorithm, our crowds displayed stopping to talk
and pair walking behavior’ as described in Section 5. An example of stopping to
talk can be seen in Figure 8. Figure 9 shows an example of two agents pair walking.
In the first frame they wait for each other and start talking. In the second frame they
walk toward the dominant agent’s destination. In the third frame the angle to their
destinations has diverged and they part ways.

Social Crowds Using Transactional Analysis 19

Fig. 9 Example of pair walking using our flexible architecture. In frame 1 the agents meet, then
walk together (frame 2) until their destinations diverge. In this case they part ways and head toward
their real destinations (frame 3).

7.3 Artistic Direction Results

The last contribution of our work is easy artist direction. To validate that our algo-
rithm allowed for such artist direction, we added simple buttons to our user interface
that allowed the user to change the distribution of friendship base scores and mood
values among the agents. We found that we could easily create a variety of different
social environments like those listed in Table 1 using our interface.

A specific example of such artist directed control is shown in Figure 10. In this
scenario agents are walking around at work. The first frame shows agents con-
versing as the user pushes the fire alarm button. This button reduced the value of
GlobalInterest (see Equation 9) to 0 and gave each agent a destination at the near-
est exit. Notice in the second frame that the conversation has stopped and agents
move quickly to exits. The third frame shows agents reengaging in conversation
when the user pushes the all clear button that raises GlobalInterest to 1 and gives
agents normal destinations again. The fourth frame shows the agents walking nor-
mally now that the fire alarm is over. Further artist direction results can be seen in
Figure 11 which shows on the left results from our bi-modal party distribution as
explained in Table 1.

20 Brian C. Ricks and Parris K. Egbert

Fig. 10 Example of our real-time artist direction in a fire alarm scene. In frame 1, the fire alarm
goes off so the global conversation interest drops and socializing stops (frame 2). In frame 3, the
user gives the all clear and agents return to conversations and soon regain their previous social
dynamics (frame 4).

Fig. 11 Two more examples of results with our algorithm. On the left we create a party scene
(waiters in gray) using a bi-modal distribution as described in Table 1. On the right we show our
algorithm running in a multi-story building scenario.

7.4 Performance Results

We further validated the contribution of our approach by looking at its performance.
As shown in Table 2, we ran our algorithm using 1,000 to 4,000 agents and calcu-
lated the frame rate. Even with 4,000 agents our algorithm ran at real-time speeds.
Our tests were done on an Intel i-7 2600 chip at 3.4Ghz with our program consum-
ing only 10-15 percent of the CPU time. Profiling our program demonstrated that
the code we added for transactional analysis and our new architecture consumed less
than 3% of our computation time in our scenario with 1,000 agents. This minimal
impact suggests that our approach could be easily added to existing crowd simula-
tion algorithms without a meaningful increase in computation time.

Social Crowds Using Transactional Analysis 21

Table 2 Performance results with our algorithm. Notice that even with 4,000 agents our algorithm
ran in real-time with all our social interactions.

8 Future Work

In terms of future work, we are looking at several further improvements to our al-
gorithm. First, our algorithm does not easily allow for the creation of groups larger
than two people. Sociological work has found that the equilibrium nature of crowds
tends toward groups of one or two, with less than 12% of observations showing
groups of size three or more (see James [15] and Coleman [7]), but we are still in-
terested in adding this capacity to our approach. Second, we are interested in more
expressive mood models for our agents based on psychological research. For exam-
ple, we might have even more realistic crowds if we use the OCEAN personality
model [10] in our work. Third, we are looking at more psychologically-based ap-
proaches to choosing dominant agents. Lastly, we are looking into adding motion
capture data into our social crowds so that as agents talk they have visible forms of
non-verbal communication.

References

1. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-
agent navigation. Robotics and Automation, 2008. ICRA 2008. IEEE International Confer-
ence on pp. 1928–1935 (2008)

2. Berne, E.: Transactional analysis: a new and effective method of group therapy. American
Journal of Psychotherapy 12(4), 735 (1958)

3. Berne, E.: What do you say after you say hello?: The psychology of human destiny. Bantam
(1984)

4. Berne, E.: Games people play: The psychology of human relationships. Penguin (2010)
5. Berne, E., Steiner, C., Kerr, C.: Beyond games and scripts. Ballantine Books (1981)
6. Carstensdottir, E., Gudmundsdottir, K., Valgardsson, G., Vilhjalmsson, H.: Where to sit? the

study and implementation of seat selection in public places. Intelligent Virtual Agents pp.
48–54 (2011)

7. Coleman, J., James, J.: The equilibrium size distribution of freely-forming groups. Sociometry
24(1), 36–45 (1961)

8. Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean
personality model. Autonomous Agents and Multiagent Systems 3, 1217–1220 (2008)

9. Durupınar, F., Pelechano, N., Allbeck, J., Güdükbay, U., Badler, N.: How the ocean personality
model affects the perception of crowds. IEEE Computer Graphics and Applications 31(3)
(2011)

22 Brian C. Ricks and Parris K. Egbert

10. Goldberg, L.: An alternative” description of personality”: The big-five factor structure. Journal
of personality and Social Psychology 59(6), 1216 (1990)

11. Gröschel, A.: Towards believable crowd simulation for interactive real-time applications. The-
sis, Hochshule fur Technik und Wirtshaft Berlin (2011)

12. Guy, S., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: A least-effort
approach to crowd simulation. ACM SIGGRAPH/Eurographics Symposium on Computer
Animation pp. 119–128 (2010)

13. Harris, T.: I’m okay, you’re okay:a practical guide to transactional analysis. Harper Perennial
(2004)

14. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical review 51(5)
(1995)

15. James, J.: The distribution of free-forming small group size. American Sociological Review
(1953)

16. Jan, D., Traum, D.: Dialog simulation for background characters. Intelligent Virtual Agents
pp. 65–74 (2005)

17. Jan, D., Traum, D.: Dynamic movement and positioning of embodied agents in multiparty
conversations. Proceedings of the Workshop on Embodied Language Processing pp. 59–66
(2007)

18. Karamouzas, I., Overmars, M.: Simulating the local behaviour of small pedestrian groups.
Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology pp.
183–190 (2010)

19. Moussaı̈d, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of
pedestrian social groups and its impact on crowd dynamics. PLoS One 5(4), e10,047 (2010)

20. Musse, S., Thalmann, D.: A model of human crowd behavior: Group inter-relationship and
collision detection analysis. Computer Animation and Simulation 97, 39–51 (1997)

21. Ondřej, J., Pettré, J., Olivier, A., Donikian, S.: A synthetic-vision based steering approach for
crowd simulation. ACM Transactions on Graphics (TOG) 29(4) (2010)

22. Padilha, E., Carletta, J.: A simulation of small group discussion. Proceedings of EDILOG pp.
117–124 (2002)

23. Patel, J.: Simulation of small group discussions for middle level of detail crowds. DTIC
Document (2004)

24. Pedica, C., Högni Vilhjálmsson, H., Lárusdóttir, M.: Avatars in conversation: the importance
of simulating territorial behavior. Intelligent Virtual Agents pp. 336–342 (2010)

25. Pedica, C., Vilhjálmsson, H.: Spontaneous avatar behavior for human territoriality. Intelligent
Virtual Agents pp. 344–357 (2009)

26. Pelechano, N., Stocker, C., Allbeck, J., Badler, N.: Being a part of the crowd: towards vali-
dating vr crowds using presence. Autonomous Agents and Multiagent Systems pp. 136–142
(2008)

27. Popelová, M., Bı́da, M., Brom, C., Gemrot, J., Tomek, J.: When a couple goes together: Walk
along steering. Motion in Games pp. 278–289 (2011)

28. Reynolds, C.: Steering behaviors for autonomous characters. Game Developers Conference
(1999)

29. Ricks, B., Egbert, P.: Improved obstacle relevancy, distance, and angle for crowds constrained
to arbitrary manifolds in 3d space. Eurographics (2012)

30. Ricks, B., Egbert, P.: More realistic, flexible, and expressive social crowds using transactional
analysis. Computer Graphics International To Appear (2012)

31. Scheflen, A., Ashcraft, N.: Human territories: How we behave in space-time. Prentice-Hall
(1976)

32. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evalu-
ating steering behaviors. Computer Animation and Virtual Worlds 20(5-6), 533–548 (2009)

33. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Composite agents. Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation pp. 39–
47 (2008)

